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SYMMETRY AND DESIGN IN MIXTURE EXPERIMENTS

1. INTRODUCTION

Many products, such as oils, cements, gasolines, and perfumes, are
mixtures of components. The development of better products of these types
involves experimentation with different formulations, or blends, of the components..
In these experiments, the components are not usually allowed to vary over the full
range of 0-100% but are subjected to upper and lower bound constraints for
physical, chemical, or economic reasons. Under certain conditions, the upper and
lower bound constraints create an experimental region with symmetry properties
that are useful in finding the centroid of the region and in blocking first-order
response surface designs.

Symmetric regions are also useful in deriving second-order response
surface designs for mixture experiments. Kurotori' proposed that the simplex-
lattice designs of Scheffe2 be mapped into a constrained mixture region. There is no
compelling reason to use a simplex-shaped design for a subregion of the mixture
space; Kurotori's' proposal was based on ease of use. Thompson and Myers3

proposed the use of rotatable response surface designs to explore a constrained
mixture region. Although it seems natural to explore the region around the current
product formulation by a rotatable design, the proposal of Thompson and Myers3

has not been popular. Their method of mapping a response surface design for
nonmixture variables to a constrained mixture region requires matrix
manipulations. In contrast, Kurotori's' mapping of simplex-shaped designs to
constrained mixture regions only requires a simple linear transformation. Response
surface designs for mixture experiments may be derived by geometry directly from
symmetric regions. The designs are then expressed in terms of component
proportions, rather than as nonmixture variables, and can be mapped to a
constrained region by a simple linear transformation. 1,4 In addition, the
geometrically derived designs have a more natural orientation than designs obtained
by the matrix method of Thompson and Myers.3 For example, the geometrically
derived designs generally have fewer levels of the component proportions than
designs derived by matrix manipulation, and the geometrically derived designs treat
all components equally; whereas, the matrix-derived designs usually do not.

Section 2 reviews the geometry of constrained mixture spaces, the use of
pseudocomponents, and the blocking of mixture designs, which is a major use of
symmetry in mixture experiments. Sections 3 and 4 each identify a type of
symmetry and examine its usefulness in blocking mixture experiments. Section 5
presents several second-order designs for mixture experiments and Section 6 applies
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a mixture design to the development of an obscurant smoke. The appendix shows
that the three-level mixture designs described in this report are the uniform shell
designs of Doehlert.5

2. BACKGROUND

2.1 Geometry.

The natural bounds on the component proportions 0 < xK _< 1 for
i = 1,2,...,q define a hypercube in q-dimensional spar--. The mixture constraint

q
plane x,= 1 intersects the hypercube to form a regular (q-1)-dimensional

simplex. The simplex is actually formed by the intersection of the lower bounds
0 < zi with the mixture constraint plane; the upper bounds zi !_ 1 intersect the
simplex only at its vertices.

Additional constraints of the form 0 < Li :_ ;i -_ Ui -. 1 define a
rectangular region in q-dimensional space. The mixture constraint plane intersects
this rectangular region to form the experimental region, which is, therefore, a
rectangular section. An alternative view, which is helpful in working with mixture
experiments, is to define the experimental region as the intersection of two
simplexes. One simplex is formed by the intersection of the lower bound
constraints and the mixture constraint and is referred to as the L simplex. The
other simplex, called the U simplex, is formed by the intersection of the upper
bounds and the mixture constraint. The U simplex has an orientation opposite that
of the L simplex (the directions of the vertices and faces are switched along the
axes). The quantities

RL = - Li (1)
i=l

and
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q

Ru= , U- 1 (2)

are the relative sizes of the L and U simplexes, respectively, to the simplex of
unconstrained mixture components.

The constraints on the component proportions determine the size,
shape, location, and orientation of the experimental region; this is too much
information for the study of symmetry, which is based on shape only. It is possible
to obtain a one-to-one correspondence between the constraints and the shape of the
experimental region by transforming the component proportions to a new set of
variables called pseudocomponents.

2.2 Pseudocomponents.

Pseudocomponents are defined as

z, (z, - L)/R L ifRL < RU (3)

or

z=(U - x)/RU if RU < RL (4)

Note that there are actually two pseudocomponent transformations, one bascd on
the lower bound constraints, the other based on the upper bound constraints.
Given that the upper and lower bounds are defined so that each component can
attain both its upper and lower bounds (and this can always be done),
pseudocomponents always have lower bounds of zero and upper bounds Bi given by

9



Bi = RI/R p (5)

where R, = U - L, is the range of the ith component and Rp is the minimum of
RL and R(-. The set of pseudocomponent upper bounds completely determines the
shape of a mixture region constrained by upper and lower bounds.

An inverse pseudocomponent transformation

xi = L + RL zi (6)

or

zi = Ui - R U' zj (7)

may be used to map a standard mixture design (expressed as z's) to the constrained
region for an experiment (expressed as z's, the proportions of the components). A
standard mixture design is a mixture design centered at (1/q, 1/q, ..., 1/q), the
centroid of the mixture space for q components. This definition includes the
simplex-lattice and simplex-centroid designs of Scheffe,2 '0 the symmetric-simplex
designs of Murty and Das,7 and the designs discussed in this report.

2.3 Blocking.

Orthogonal blocking means the contrast representing the block effect is
orthogonal to every term in the model. To develop the conditions for orthogonal
blocking of a mixture experiment, consider a simple case: a design for three
components divided into two blocks. Let the block contrast have a coefficient of -1
for the first block and a coefficient of 1 foj" the second block. Let aI, bI, and c, be
the sums of ZI, X2 , and z3 , respectively, in the first block, and G2, b2, and c 2 be
the sums of z1 , z2 , and z 3 in the second block. The requirement for the first-order
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terms to be orthogonal to the block contrast is that a, = a2, b, = b2 , and cl = c2.
Because X1, z 2 , and X3 are proportions, a, + b, + cl is equal to the number of
observations in the first block, and a 2 + b2 + C2 is equal to the number of
observations in the second block. Therefore the blocks must be of equal sizes if the
simple coding, -1 and 1, is used for the block contrast.

Second-degree canonical polynomials contain cross product terms of the
form ;zz. For these second-order terms to be orthogonal to the block contrast, the
sum of ;zj in the first block must be equal to the sum of xz,. in the second block.
These blocking requirements are readily generalized to more than two blocks: the
sum of ; (and ;xx for second-order models) must be the same in each block. This
allows simple orthogonal contrasts, such as, for three blocks, -1 0 1 and 1 -2 1, to
be used for the block effects in the analysis.

Blocking schemes with unequal block sizes can be developed. For two
blocks of sizes nj and n 2 , the coefficients for the block contrast should be
proportional to -1,/n i and 1/n 2. The blocking requirement for the first-order terms
then becomes n2 • a, = nj " a2, n2 * bl = nj ' b2 , etc.; a similar requirement
applies to the second-order terms.

3. TWIN SYMMETRY

A constrained mixture region will have a type of symmetry when the L

and U simplexes are the same size. The mixture region for 0.2 < X1 _ 0.7,
0.05 <_ X 2 < 0.65, and 0.1< X 3 _o 0.3, which has RL =R U, is presented in
Figure 1. If one looks at Figure 1 upside down, the experimental region appears
exactly the same as it does right side up. This is no coincidence; inverting Figure 1
interchanges the j, and U simplexes, but, as the L and U simplexes are the same
size, this produces the same experimental region. Every point in the experimental
region has a twin that is the reflection of the point through the centroid. To find
the twin of a point x, transform x to z by one pseudocomponent transformation,
then transform z back to components by the inverse of the other pseudocomponent
transformation. Because RL = R U, this calculation of the twin t of a point x
reduces to t, = L. + U - zi for i = 1,2,3,...,q. As a mnemonic for the existence of
pairs of twins in the experimental region, I call this type of symmetry twin
symmetry. Twin symmetry has consequences for finding (and defiming) the centroid
of the experimental region and for blocking fist-order designs.

11
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Figure 1. Twin Symmetry
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Piepel 8 noted that averaging the vertices of a constrained mixture region
does not necessarily yield the classical center-of-mass (COM) centroid. Thus, he
viewed the average vertices (AV) centroid as an approximation of the COM
centroid. Piepel9 suggested a new technique for quickly estimating a centroid. His
range normalized midrange (RNM) formula for a centroid is:

q q
e; = - [R(E Mj - 1)/( , nj)], (8)

i=i j=1

where Mi = (L, + U,)/2 is the midrange of the ith component. Piepel9 noted that
all three centroids (COM, AV, and RNM) are the same if the sum of the midranges
is exactly one. This condition (sum of midranges equals one) is algebraically
equivalent to RL = Ru. Thus, whenever an experimental region has twin
symmetry, its centroid is uniquely defined; further, the centroid is given by the
component midranges (it is easily seen that the correction term in the RNM
formula is zero when the sum of the midranges is one). Of no less importance is
that any point in the experimental region and its twin average to the centroid.
Pairs of twin points are, therefore, blocks with respect to first-order mixture
designs.

3.1 Example of Twin Symmetry.

Snee and Marquardt' ° discuss a gasoline blending study in which the
five components have bounds 0 < X : 0.1, 0 < z 2 ! 0.1, 0.05 < X3  0.15,
0.2 < X4 <0.4, and 0.4 < x5  _ 0.6, so that RL = Ru = 0.35. The experimental
region has 28 vertices; but, Snee and Marquardt 0 selected 16 vertices for use as a
first-order design. The 16 vertices are 8 pairs of twins, or, for the first-order model,
8 blocks of size 2. The eight blocks could, for example, be assigned to the eight
points of a 23 factorial design for three process variables. Then all seven effects of
the 23 design in the process variables could be estimated orthogonally to the five
mixture terms. The proposed design, with Snee and Marquardt's' ° numbering of
the vertices and the levels of the process variables (w1 , w2 , w3) coded as -1 and 1,
is given in Table 1. With only 4 degrees of freedom for error, and no process
variable times mixture component terms in the model, this design may be
considered a screening design. Another block consisting of a replicated centroid
point (centroid for both mixture and process variables) could be added to obtain
another degree of freedom for error and 1 degree of freedom for curvature.

13



Table 1. Blocking by Twin Symmetry

Row Block Vertex X, z, z$ z4  z5  W1 we wo

1 1 1 0.10 0.10 0.05 0.20 0.55 -1 -1 -1
2 1 8 0.00 0.00 0.15 0.40 0.45 -1 -1 -1
3 2 2 0.10 0.00 0.15 0.20 0.55 1 -1 -1
4 2 7 0.00 0.10 0.05 0.40 0.45 1 -1 -1
5 3 3 0.00 0.10 0.15 0.20 0.55 -1 1 -1
6 3 6 0.10 0.00 0.05 0.40 0.45 -1 1 -1
7 4 4 0.10 0.10 0.15 0.20 0.45 1 1 -1
8 4 5 0.00 0.00, 0.05 0.40 0.55 1 1 -1
9 5 9 0.00 0.00 0.05 0.35 0.60 - 1 - 1 1

10 5 10 0.10 0.10 0.15 0.25 0.40 -1 -1 1
11 6 11 0.10 0.00 0.05 0.25 0.60 1 -1 1
12 6 26 0.00 0.10 0.15 0.35 0.40 1 -1 1
13 7 14 0.00 0.10 0.05 0.25 0.60 -1 1 1
14 7 23 0.10 0.00 0.15 0.35 0.40 -1 1 1
15 8 17 0.00 0.00 0.15 0.25 0.60 1 1 1
16 8 20 0.10 0.10 0.05 0.35 0.40 1 1 1

3.2 Interpretation as Rectangular Sections.

Often an experimenter defines the region of interest by adding and
subtracting a half-range, hi, to the level of the ith component in the current
formulation. This defines a rectangular region in q-dimensional space whose
centroid lies on the mixture plane. If ci is the level of the ith component in the
current formulation, then defining Li = ci - hi and Ui = ci + hi leads immediately
to RL = RU, which is the definition of twin symmetry. Thus, twin symmetry
implies that the experimental region is a central section of a rectangular region.
Experimenters often generate regions of interest with twin symmetry by defining
the experimental region in terms of a centroid and a set of half-ranges. Conversely,
all mixture regions with twin symmetry can be described by a centroid and a set of
half-ranges.

3.3 A Special Case: Parallelotope Regions.

Another common procedure for specifying a region of interest in mixture
experiments is to define the experimental region by a 2-level factorial design in the
proportions of q-1 components. The qth component is adjusted to make the

q-1 q-
component proportions sum to one; therefore Lq = 1 - U and Uq = 1 - L,.

14



The region so defined is a parallelotope (the generalization of parallelogram,
parallelepiped, ...). Parallelotope regions (which have the condition on Lq and Uq)
are a subset of regions with twin symmetry (which have the sum of midranges equal
to 1). Although parallelotope regions have twin symmetry, designs for them are
most easily obtained by their similarity to cuboidal regions. Saxena and Nigam"
discuss a five component lubricating oil study in which the experimental region is a
parallelotope. By analogy to a composite design for a 4-dimensional cube, the 16
vertices and 8 face centroids are an excellent second-order design for the
parallelotope region. (The region does not have 32 faces, or 3-dimensional
boundaries, as Saxena and Nigam" state, although it does have 32 edges.)

4. RADIAL SYMMETRY

There is another condition under which the three centroids (COM, AV,
and RNM) are the same. Consider the constrained mixture region 0.1 < x, < 0.6,
0.2 < x 2 < 0.7, and 0.1 _<X3 0.6. The midranges sum to 1.15, RL= 0.6 and
R = 0.9, but the centroid is z = 0.3, z 2 = 0.4, and z3 =0.3 by any of the
three methods. The component ranges are all equal for this example, and Figure 2
illustrates how equal component ranges affect the experimental region: the
experimental region is a simplex (the L simplex here) whose vertices have been
truncated at the same distance from the centroid. The experimental region shows a
type of symmetry found in nature (e.g., starfish and daisies) and called radial
symmetry (e.g., see Villee,'12 page 78). Because every vertex of the L simplex has
been truncated in the same manner, the centroid of the L simplex is also the
centroid of the experimental region. This gives an easy method of calculating the
centroid of the experimental region when the component ranges are equal:
transform z = (1/q)l by an inverse pseudocomponent transformation. The inverse
of either pseudocomponent transformation may be used here: radial symmetry is
due to the L and U simplexes having the same centroid.

Radial symmetry, like twin symmetry, creates related points in the
experimental region. In a radially symmetric region, there are q symmetrically
placed points that average to the centroid of the region. To find the q - 1 points
symmetrically placed to a point x, transform the point x to pseudocomponents z,
then cyclically permute the levels of z. For example, if z' = (a, b, c), then the
permutations are (b, c, a) and (c, a, b). Finally, transform each permutation back
to components. The cyclical permutation must be done in pseudocomponent units,
but the q radially symmetric points will average to the centroid when expressed in
component units.

15
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X2  X3

Figure 2. Radial Symmetry
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Radial symmetry also provides opportunities for blocking first-order
designs. Table 2 presents a first-order design for four components with lower
bounds 0, 0.1, 0.2, and 0.3 and upper bounds 0.24, 0.34, 0.44, and 0.54. The design
is the 12 vertices of the constrained region. The blocks are easily identified from
the cyclic permutations of the pseudocomponent values (zi) given in Table 2.

Table 2. Blocking by Radial Symmetry

Vertex z, ze zs  z4  Block z, z1 z8  z4

1 0.6 0.4 0.0 0.0 1 0.24 0.26 0.20 0.30
2 0.0 0.6 0.4 0.0 1 0.00 0.34 0.36 0.30
3 0.0 0.0 0.6 0.4 1 0.00 0.10 0.44 0.46
4 0.4 0.0 0.0 0.6 1 0.16 0.10 0.20 0.54
5 0.6 0.0 0.4 0.0 2 0.24 0.10 0.36 0.30
6 0.0 0.6 0.0 0.4 2 0.00 0.34 0.20 0.46
7 0.4 0.0 0.6 0.0 2 0.16 0.10 0.44 0.30
8 0.0 0.4 0.0 0.6 2 0.00 0.26 0.20 0.54
9 0.6 0.0 0.0 0.4 3 0.24 0.10 0.20 0.46

10 0.4 0.6 0.0 0.0 3 0.16 0.34 0.20 0.30
11 0.0 0.4 0.6 0.0 3 0.00 0.26 0.44 0.30
12 0.0 0.0 0.4 0.6 3 0.00 0.10 0.36 0.54

When expressed in pseudocomponents, radially symmetric regions have
lower bounds of zero and a common upper bound, B. Hence all radially symmetric
regions can be indexed by only two parameters: q and B. A region can have both
radial and twin symmetries; such regions have B = 2/q. The study of regions with
both twin and radial symmetries led to the development of the second-order designs
described in this report.

Interpretation as Cuboidal Sections.

The use of equal component ranges creates a hypercube, rather than a
rectangular region, in q-dimensional space. Thus, a radially symmetric region is a
cuboidal rather than a rectangular section. A mixture region with both twin and
radial symmetries is a central section of a q-dimensional cube.

17



5. SECOND-ORDER DESIGNS

5.1 Mixture Designs.

A design for a mixture experiment is an N by q matrix specifying the
proportions of the q components for the N blends to be used in the experiment. A
mixture design can be viewed as N points in (q - 1)-dimensional space. As such, it
does not matter if the design is described in terms of either q proportions, or q - 1
functionally independent variables. In mixture experiments, the polynomial models
commonly used in response surface methodology are usually reparameterized from
q - 1 variables to q proportions by using Scheffe's 2 canonical polynomials. The
predictions of a polynomial model and the variances of those predictions are not
affected by the reparameterization. Therefore, design criteria based on prediction
variance, such as rotatability and G-efficiency (see Box and Draper" for a
discussion of these), are applicable when response surface designs are used for
mixture models. Other design criteria and features may uiot be applicable when
response surface designs are used for mixture experiments.

Murty and Das7 introduced the concept of symmetric-simplex designs
for estimating the coefficients of Scheffe's 2 second-degree mixture polynomials. A
mixture design is a symmetric-simplex design if, for each point in the design, all
other points obtained by permuting the levels of the components are also in the
design. Thus, a symmetric-simplex design can be indicated by a few typical points;
all other points in the design can be obtained by permuting the levels of the typical
points. For example, the simplex-centroid design6 for q = 3 can be given by three
typical points: (1, 0, 0), (1/2, 1/2, 0), and (1/3, 1/3, 1/3).

A natural method to develop standard mixture designs with symmetry
properties is to construct designs from mixture regions that have both twin and
radial symmetries; these regions have lower bounds of zero and upper bounds of
2/q.

5.2 Hexagon Design.

For three-component mixtures, the region bounded by an upper bound
of 2/3 on each component is a regular hexagon. The six vertices of the hexagon
plus the centroid (preferably replicated) form a rotatable second-order design.14

The hexagon design is a member of the class of uniform shell designs5 and is also a
symmetric-simplex design with two typical points: (2/3, 0, 1/3) and (1/3, 1/3. 1/3).
Note that this is a three-level design. It may be desirable to check for lack of fit by

18



using check points. As shown in Figure 3, the regular hexagon can be divided into
six equilateral triangles that have a common apex at the center of the hexagon.
The centroids of the six equilateral triangles are a natural set of check points; each
check point is equidistant from the centroid and two vertices of the hexagon. The
design, which can be blocked, is given in Table 3. The six check points can be
divided into two sets of three. Either set may be put in block 1, and the other set
in block 2. For a discussion of the selection and use of check points, see Shelton,
Khuri, and Cornell.' 5

z1

0I /

\ I

' I

I J

I %
I 

I

I

0
I\

Z2  Z3

Figure 3. Hexagon Design (e) and Check Points (circles)
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Table 3. Hexagon Design

Point z, Zf z, Block

1 2/3 0 1/3 1
2 .1/3 2/3 0 1
3 0 1/3 2/3 1
4 1/3 1/3 1/3 1
5 1/3 1/3 1/3 1
6 2/3 1/3 0 2
7 0 2/3 1/3 2
8 1/3 0 2/3 2
9 1/3 1/3 1/3 2

10 1/3 1/3 1/3 2
11 5/9 2/9 2/9 1
12 2/9 5/9 2/9 1
13 2/9 2/9 5/9 1
14 1/9 4/9 4/9 2
15 4/9 1/9 4/9 2
16 4/9 4/9 1/9 2

Points 11-16 are optional check points.

5.3 Composite Designs.

For mixtures of four components, the region with both twin and radial
symmetries is obtained by placing an upper bound of 1/2 on each component; these
constraints reduce the experimental region to a regular octahedron (Figure 4). The
octahedron has 6 vertices and 8 faces: the 6 vertices define 3 orthogonal axes, and
the centroids of the 8 faces determine the axes of a four-component mixture system.
The octahedron therefore links mixture and nonmixture representations of
3-dimensional experimental designs. It should not be surprising, then, to find that
the commonly used response surface designs for three (independently adjustable)
factors can be expressed naturally as designs for four-component mixture
experiments. As the second-order polynomial has 10 parameters, the 6 vertices of
the octahedron are clearly inadequate as a second-order design. The centroids of
the 8 faces can be added to the 6 vertices and the centroid to obtain the
3-dimensional central composite design. The central composite design is usually
obtained from the vertices and face centroids of a cube, but the cube and the
octahedron are dual to each other; either can be inscribed inside the other with the
vertices of the inscribed polyhedron at the face centroids of the other polyhedron.
The only difference between the octahedral composite design and the cuboidal
composite design is that the relative distances of the 6- and 8-point groups from the
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centroid are interchanged. [The cuboidal composite design for functionally
independent variables has 6 axial or star points at a radius of 1 and 8 factorial
points at a radius of 31/2 ; the octahedral composite design for mixtures has 8 face
centroids at a radius of 12- 1/ 2 and 6 vertices at a radius of 4- 1/2 . Note the ratio
(4/12) -1/2 31/2 .] The composite design for mixtures can be made spherical by
shrinking the vertices of the octahedron back to the radius of the face centroids.
The design is given in Table 4 in symmetric-simplex form.

zz

Figure 4. Tetrahedron Truncated to Octahedron
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Table 4. Central Composite Designs

Two Three Nearly

Point zj zr z$ z4 Blocks Blocks Rotatable

1 1/2 1/6 1/6 1/6 1 1 1
2 1/6 1/2 1/6 1/6 1 1 1
3 1/6 1/6 1/2 1/6 1 1 1

4 1/6 1/6 1/6 1/2 1 1 1
5 0 1/3 1/3 1/3 1 2 1
6 1/3 0 1/3 1/3 1 2 1
7 1/3 1/3 0 1/3 1 2 1

8 i/3 1/3 1/3 0 1 2 1
9 a a b b 2 3 2

10 a b a b 2 3 2
11 a b b a 2 3 2

12 b a a b 2 3 2
13 b a b a 2 3 2

14 b b a a 2 3 2
15 1/4 1/4 1/4 1/4 2 1 1

16 1/4 1/4 1/4 1/4 2 1 1

17 1/4 1/4 1/4 1/4 - 2 2

18 1/4 1/4 1/4 1/4 2 -

Design a b

Octahedral 0 = 0.0000 1/2 = 0.5000
Spherical 1/4 - (1/48)' 2 = 0.1057 1/4 + (1/48) ' = 0.3943
Rotatable 1/4 - 2592-' = 0.1099 1/4 + 2592 " ' = 0.3901

Two Blocks 1/12 = 0.0833 5/12 = 0.4167

Three Blocks 1/4 - (1/72)"' = 0.1321 1/4 + (1/72)'" = 0.3679
Nearly Rotatable 1/4 - (7/360)'" = 0.1106 1/4 + (7/360)'" = 0.3894

This composite design for mixtures can be blocked into two blocks of
eight, three blocks of six, or into blocks of different sizes. For 2 blocks of 8, 1 block
consists of the 8 face centroids and the other block consists of 2 center points plus
the 6 vertices moved to a radius of 9 -1/2 . This blocking requires use of the values
a = 1/12 and b = 5/12, as given in Table 4. For 3 blocks of 6, the values
a = 1/4 - (1/72)1/2 and b = 1/4 + (1/72)1/2 are required. The 3 blocks are (1) the
upper face centroids plus 2 center points, (2) the lower face centroids plus 2 center
points, and (3) the 6 vertices shrunk back to a radius of 18- 1/2. For the blocking
with unequal block sizes, the first block consists of the 8 face centroids plus 2 center

points, and the second block consists of the 6 vertices shrunk back to a radius of
(7/90)1/2 plus 1 center point. This is a common method of blocking a composite
design; the number of center points in each block is chosen tn make the blocked
design as rotatable as possible. For this nearly rotatable blocking, use
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a = 1/4 - (7/360)1/2 - 0.1106 and b = 1/4 + (7/360)1/2 0.3894. With blocks of
sizes 10 and 7, the coefficients for the block contrast must be proportional to -1/10
and 1/7 for the first and second blocks, respectively; -7 and 10 are convenient.

5.4 Cuboctahedron Design.

The edge centroids and overall centroid of the octahedron form a
second-order design. The 12 edge midpoints of the octahedron are the same points
as the edge midpoints of a cube; hence, this gives a well known design. 5 61 T The 12
points are equally distant from the centroid, and the design is considered a design
for a spherical region. The radius of this sphere is 8- 1/ 2 , which is larger than the
radius of the spherical composite design of Table 4, even though both designs vary
the components over the same range. The design comparisons made by Lucas"8 are
based on scaling the designs to have the same radius and are not necessarily
applicable if the designs are scaled to have the same component ranges. The 12
design points on the sphere can be viewed as forming a convex polyhedron, known
as a cuboctahedron (cube + octahedron), that has 14 faces: 6 squares and 8
equilateral triangles. Each of the eight triangular faces of the cuboctahedron, along
with the centroid of the cuboctahedron, forms a regular simplex. The centroids of
these eight simplexes may be used as check points; this is analogous to the
development of check points for the hexagon design. The cuboctahedron design is
not rotatable; the prediction variance is greater at points on the design radius
intersected by lines from the centroid through the centers of the square faces than
at other points on the sphere. The cuboctahedron design is given in Table 5 along
with the icosahedron design, which is discussed in the next paragraph. Like the
hexagon design, the cuboctahedron design is a symmetric-simplex design and a

member of the class of uniform shell designs.5 Box and Behnken' 7 recommend three
center points for this design.

5.5 Icosahedron Design.

An alternative to the cuboctahedron, or uniform shell, design is the
icosahedron design. The icosahedron is the regular polyhedron with 20 faces and 12
vertices. The 12 vertices plus center points form a rotatable second-order design. 4

Toth' 9 gives a derivation of the vertices of the icosahedron from an octahedron:
thus, the points of the icosahedron design for a mixture experiment are readily
determined from the octahedral region. The icosahedron design is not a
symmetric-simplex design because only half of the permutations of (0.5, 0, 0.309,
0.191) are included in the design. The structure of the icosahedron design is similar
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Table 5. Cuboctahedron and Icosahedron Designs

Point zI  ze z8 z4

1 1/2 0 a b
2 1/2 b 0 a
3 1/2 a b 0
4 0 1/2 b a

5 a 1/2 0 b
6 b 1/2 a 0
7 0 a 1/2 b
8 b 0 1/2 a
9 a b 1/2 0

10 0 b a 1/2
11 a 0 b 1/2
12 b a 0 1/2
13 1/4 1/4 1/4 1/4
14 1/4 1/4 1/4 1/4
15 1/4 1/4 1/4 1/4
16 7/16 3/16 3/16 3/16
17 3/16 7/16 3/16 3/16
18 3/16 3/16 7/16 3/16
19 3/16 3/16 3/16 7/16
20 1/'16 5/16 5/16 5/16
21 5/16 1/16 5/16 5/16
22 5,/16 5/16 1/16 5/16
23 5/16 5/16 5/16 1/16

Design a b

Cuboctahedron 1/4 = 0.2500 1/4 = 0.2500
Icosahedron 1/(51/2 ± 1) = 0.3090 1/(51/2 + 3) = 0.1910

Points 16-23 are optional check points.
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to the cuboctahedron, or uniform shell, design because the design points on the
sphere for both designs lie on the edges of an octahedron. The uniform shell design
uses the midpoints of the edges; whereas, the vertices of the icosahcdron divide the
edges into long and short segments [the ratio of the long segment to the short
segment is (51/2 + 1)/2 = 1.618, the golden ratiol. The permutations of (0.5, 0,
0.309, 0.191) not included in Table 5 form an equivalent icosahedron design
obtained by switching the direction of the long and short segments along the edges
of the octahedron. Proper randomization includes selecting one of the two
equivalent icosahedron designs at random. The alternate form of the icosahedron
design can be obtained by interchanging the values of a and b in Table 5. The
check points listed in Table 5 may be used with the icosahedron design as well as
with the uniform shell design.

5.6 Dodecahedron Design.

The dual of the icosahedron is the dodecahedron, which has 12 faces and
20 vertices. The 20 vertices plus center points form the dodecahedron design, which
is a rotatable design. 14 If five center points are used, the dodecahedron design can
be blocked into five blocks of five points each. The design is given in Table 6. Like
the icosahedron design from which it was derived, the dodecahedron design is not a
syiiietric-simplex design, and there is an alternate form that can be obtained by
iaterchanging the values of a and b in Table 6. There are two equivalent blocking
schemes for the dodecahedron design. The first assigns the permutations of (0, 1/3,
1/3, 1/3) to a single block and the permutations of (1/2, 1/6, 1/6, 1,'6) to different
blocks; Lhe other blocking scheme reverses this assignment. The alLernate blocking
scheme is also given in Table 6. The design radius of the dodecahedron design is
12-1/2 , the same as that of the spherical composite design.

5.7 Uniform Shell Designs.

The uniform shell designs generalize to more than four components;
they consist of shell points, given by all permutations of (2/q, 0, 1/q, ..., 1/q), and
the centroid (1/q, . . ., 1/q). A set of q check points for these designs is given by
the permutations of [(2q - 1)/q 2, (q - 1)/q 2, . . ., (iq - 1)/e]. An alternate set of q
check points is given by the permutations of [1/q , (q + 1)/q 2, ... , (q + 1)/q 2].
The design radius of uniform shell designs for mixtures is 21/2 /q, which is larger
than [1/q(q - 1)] 1/2, the radius of a sphere inscribed inside the mixture simplex.
Of course, the design points lie inside the mixture space, but a part of the sphere of
the design radius extends beyond the faces of the simplex.
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Table 6. Dodecahedron Design

Point z1  Z2 z z4  Blocking Alternative

1 1/6 1/3 a b 1 2
2 1/6 b 1/3 a 1 3
3 1/6 a b 1/3 1 4
4 1/2 1/6 1/6 1/6 1 5
5 1/4 1/4 1/4 1/4 1 1
6 1/3 1/6 b a 2 1
7 a 1/6 1/3 b 2 3
8 b 1/6 a 1/3 2 4
9 1/6 1/2 1/6 1/6 2 5

10 1/4 1/4 1/4 1/4 2 2
11 1/3 a 1/6 b 3 1
12 b 1/3 1/6 a 3 2
13 a b 1/6 1/3 3 4
14 1/6 1/6 1/2 1/6 3 5
15 1/4 1/4 1/4 1/4 3 3
16 1/3 b a 1/6 4 1
17 a 1/3 b 1/6 4 2
18 b a 1/3 1/6 4 3
19 1/6 1/6 1/6 1/2 4 5
20 1/4 1/4 1/4 1/4 4 4
21 0 1/3 1/3 1/3 5 1
22 1/3 0 1/3 1/3 5 2
23 1/3 1/3 0 1/3 5 3
24 1/3 1/3 1/3 0 5 4
25 1/4 1/4 1/4 1/4 5 5

a = 1/3(5 1/2 + 3) 2 0.0637;
b = (51/2 + 2)/3(5 1/2 + 1) 0.4363.
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6. EXAMPLE

Obscurant smokes are used to hide military targets from the enemy's
view. In modern warfare, the smokescreen must not only block the enemy's view
but must also defeat devices that use infrared (IR) and radar frequencies. To block
transmission of electromagnetic waves at the visible, IR, and radar frequencies, an
obscurant smoke may be made from three components - powder, flake, and fiber
- that block transmission at the visible, IR, and radar frequencies. From the
known properties of the individual components, it can be estimated that a mixture
of 20% powder, 30% flake, and 50% fiber would yield acceptable blockage in all
three frequency bands. There is, however, good reason to suspect that this
straightforward calculation is not correct. The flakes act as a lubricant that
prevents the fibers from entangling as they otherwise would, and the powder
particles tend to coat the surface of the much larger flake and fiber particles. This
coating phenomenon changes the interaction of the particles with electromagnetic
waves. Therefore it is reasonable to explore a region around the calculated best
mixture. The hexagon design (Table 3 and Figure 3) may be used to do this. The
inverse pseudocomponent transformation zi = L + RL " zi can be used to map the
design to the experimental region. Using a half-range of 0.15, the lower bounds on
the proportions of the components would be 0.05 < powder, 0.15 < flake, and
0.35 < fiber; from the lower bounds, RL = .45. The mapping for the 16-point
hexagon (or uniform shell) design is given in Table 7 and illustrated in Figure 5.
The design points and check points are uniformly spaced over the experimental
region and therefore provide a good search for the optimum mixture without regard
to the use of a polynomial model for interpolation. The design is rotatable so that if
a second-order polynomial is used, the predictions will be equally precise at all
points on concentric circles: only the distance from the center of the design region,
and not the direction, determines the precision of the predictions (assuming the
second-order polynomial model is adequate). Because of the rotatability of the
hexagon design, the experimental region is usually considered to be circular (the
circle in Figure 5) rather than hexagonal.
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Table 7. Mapping of Uniform Shell Design

Point zi  zs  z1  z2 f s

1 2/3 0 1/3 .35 .15 .50

2 1/3 2/3 0 .20 .45 .35

3 0 1/3 2/3 .05 .30 .65

4 1/3 1/3 1/3 .20 .30 .50

5 1/3 1/3 1/3 .20 .30 .50
6 2/3 1/3 0 .35 .30 .35
7 0 2/3 1/3 .05 .45 .50

8 1/3 0 2/3 .20 .15 .65
9 1/3 1/3 1/3 .20 .30 .50

10 1/3 1/3 1/3 .20 .30 .50
11 5/9 2/9 2/9 .30 .25 .45

12 2/9 5/9 2/9 .15 .40 .45
13 2/9 2/9 5/9 .15 .25 .60
14 1/9 4/9 4/9 .10 .35 .55

15 4/9 1/9 4/9 .25 .20 .55

16 4/9 4/9 1/9 .25 .35 .40

x1 = 0.05 + 0.45 • zi
2 = 0.15 + 0.45"Z 2

X3 = 0.35 + 0.45 Z3
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Figure 5. Application of Hexagon Design to Obscurant Smoke Formulation
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7. SUMMARY

Two types of symmetry can occur when the component proportions of a
mixture experiment are constrained by upper and lower bounds. Both symmetries
create related points in the constrained mixture region. Sets of related points form
blocks with respect to first-degree polynomial models. The presence of either type
of symmetry implies that the centroid of the constrained region is uniquely defined.
That is, the three methods proposed for calculation of the centroid of a mixture
region yield the same result when the region is symmetric. Shortcut methods of
calculating the centroid, however, depend on the type of symmetry. For regions
with twin symmetry, the centroid is given by the component midranges. The
centroid of a radially symmetric region can be calculated by an inverse
pseudocomponent transformation of (1/q) 1.

An examination of mixture regions with both twin and radial
symmetries has provided new insights into designs for mixture experiments. The
uniform shell designs can be written as three-level symmetric-simplex designs for
mixtures. It was shown that the 3-dimensional central composite design can be
written in symmetric-simplex form for mixture experiments. The icosahedron
design and the dodecahedron design were also given. A uniform shell design was
applied to developing an obscurant smoke.
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APPENDIX
PROOF FOR UNIFORM SHELL DESIGNS

For the uniform shell designs, the rows of the design matrix X consist of
shell points, given by all permutations of (2/q, 0, l/q, ... , 1/q), and a row for the
centroid (1/q, .. ., 1/q). To show that these designs are the uniform shell designs of
Doehlert,5 transform the N x q matrix X to an N x (q-1) matrix W by

[0oiw] = 8'1qX-J] P

where s is a scaling factor, J is a matrix of all l's, and P is an orthogonal matrix.
By proper selection of s, P, and the order of the rows of X, W will be exactly the
designs listed by Doehlert.'

The design X has radius 21/2 /q, so qX has radius 21/2, whereas the
uniform shell designs of DoelLert 5 are scaled to have radius 1. Therefore
s = 1/2 1/2 is required in the equation. The orthogonal matrix P required for the
equation can be obtained by normalizing the columns of

1 -I -I -1 -1I
1 1 -1 -1 -I

1 0 2 -1 -1

1 0 0 3 -1

1 0 0 0 4

to have sum of squares 1. Doehlert 5 does not give all the rows of the uniform shell
designs; the omitted rows can be obtained from the given rows by multiplying by
-1. The row order required to obtain the designs given by Doehlert5 from the
equation above is most easily expressed as the rows of the matrix qX - J, which
has elements -1, 0, and 1. The required row order is:
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0 0 0 0 0
-1 1 0 0 0

-I 0 1 0 0

0 -I 1 0 0
-1 0 0 1 0

0 -I 0 1 0
0 0 -1 1 0

-1 0 0 0 1
0 -I 0 0 1

0 0 -1 0 1

0 0 0 -1 1

Other choices for s and P in the above equation give the uniform shell
designs in a different orientation or with a different scaling (or both). Some of the
other orientations are much better than the orientation used by Doehlert, 5 which
gives the first variable 5 levels, the last variable 3 levels, and all other variables 7
levels. For q = 4, 8, 12, and 16, the use of s = 1/2 and a Hadamard matrix (not
scaled to be an orthogonal matrix) for P in the equation above gives the uniform
shell designs for 3, 7, 11, and 15 variables as 3-level designs with levels -1, 0, and 1.
The 3-variable design is the same design as the Box-Behnken' 7 design, but the
designs for 7, 11, and 15 variables are new designs. The uniform shell designs for
other numbers of variables can usually be rotated to have mostly 5-level factors
with one 3-level factor and sometimes one 7-level factor.
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